Welcome

Status of *Trichoderma* Research and Development in Bangladesh

M. A. Rahman, M. Afroz, M.S. Nahar, M. Y. Mian and S. A. Miller

Isolation, Identification and efficacy tests of Trichoderma isolates in Bangladesh

Isolates	Organization involved
130 isolates collected, 5 effectively control various seedling diseases	Research organization (BARI)
55 isolates collected by Universities,3 effectively control various seedling diseases	BAU, BSMRAU

Basic studies with *T. harzianum* isolate(s) conducted by Universities and Research institutes of Bangladesh

Study area	Results	References
Temperature,pH&compatibility to fungicides	30°C best for growing pH was 6.5, Ridomil and Rovral.	BegumandBhuiyan (2004)
For formulation: Bran's from soybean, maize, seasame, rice, wheat, black gram and sawdust + peat soil as carrier of <i>T</i> . <i>harzianum</i>	Black gram was proved to be the best combined with peat soil	Ali and Meah, (2007)
Compatibility of <i>T. harzianum</i> with Vitavax	Vitavax 200 as soil drenching was found to be most effective against foot and tube rot of tuberose	Begum and Bhuiyan (2007)
Growth and storability study with 5 isolates of <i>T. harzianum</i>	 (1) Growth was best for Teh-3 and TG-2 at 24 and 48 hrs; (2) Conidia production was higher for TBg-1 and Teh-3; (3) (3) Conidial they germinated 100% after 3 months of storing at 30C. 	Sultana et al. (2001)

Efficacy of different isolates in controlling diseases of various crops in Bangladesh

Crops	Pathogen	Disease	Tested isolates	References
Tomato	Meloidogyne	Root-knot	W-108, W120, W-127, TB-1, TK and TY	Faruk <i>et al.</i> , 1999
Bush bean	Sclerotium rolfsii	Foot rot	5 effective isolates	Faruk <i>et al.</i> , 2002
Potato	Sclerotium rolfsii	Stem and tuber rot	6 effective isolates	Dey et al., 2004
Tuberose	Sclerotium rolfsii	Foot and Tube rot	18 isolates, R1 from rice found best	Islam and Bhuiyan. 2006
Eggplant	Pythium spp. Sclerotium rolfsii Rhizoctonia spp.	Damping off Foot rot Seedling blight	one isolates	Ali and Meah, 2007
Tomato	Rhizoctonia solani Fusaium solani	Seedling blight	5 effective isolates	Rahman., <i>et al</i> 2001

Production of Tricho-compost at BARI, Bangladesh

Material used		
Cow dung		
Poultry refuse		
Waterhyacinth		
Vegetable waste		
Sawdust		
Maize bran		
Molases		

Spore suspension of *T. harzianum* = 3x107/ml water

After loading the compost is ready to use at 42 days

Leachate flow by the whole

Composting house at BARI, Bangladesh

Nutrient status of Tricho-compost at BARI, Bangladesh

Nutrient	Amount
рН	8.6
Organic Carbon (OC)	10.83 %
Total nitrogen (N)	1.11%
C:N	9.7:1
Phosphorus (P)	0.67%
Potassium (K)	1.15%
Sulpher (S)	0.2%
Calcium (Ca)	2.50%
Magnessium (Mg)	0.6 %
Copper (Cu)	0.03 %
Iron (Fe)	0.05 %
Manganese (Mn)	0.02%
Zinc (Zn)	0.03%
Boron (B)	0.015%
Nickel (Ni)	3.51 ppm
Lead (Pb)	11.75 ppm
Chromium (Cr)	12.75 ppm
Cadmium (Cd)	6.0 ppm
Arsenic (As)	1.504 ppm
Inert material	<1%

After 42 days the compost and after sieving the compost dust with 16% mosture

IPM Package for Cabbage Production in Farmers' Field

Objective:

- 1. Raising healthy seedlings
- 2. Decrease pesticide use and Increase Production

Treatment:

A= Nursery

T₁=Tricho-compost @1.0 t/ha,

T₂= T1=Tricho-compost @1.5 t/ha,

T₃= T1=Tricho-compost @2.0 t/ha,

T₄= Framer's practice (Cowdung @ 5 t/ha + TSP @ 100kg/ha)

B= Main field

 $\begin{array}{l} T_1 = \mbox{Tricho-compost} @ 2.0 \mbox{ t/ha} + \frac{3}{4} \ N_{180} \mbox{P}_{70} \mbox{K}_{120} \mbox{S}_{20} \mbox{Zn}_4 \mbox{B}_2 \mbox{Mo}_1 \ , \\ T_2 = \mbox{Tricho-compost} @ 2.5 \mbox{t/ha} + \frac{3}{4} \ N_{180} \mbox{P}_{70} \mbox{K}_{120} \mbox{S}_{20} \mbox{Zn}_4 \mbox{B}_2 \mbox{Mo}_1 \ , \\ T_3 = \mbox{Tricho-compost} @ 3.0 \mbox{t/ha} + \frac{3}{4} \ N_{180} \mbox{P}_{70} \mbox{K}_{120} \mbox{S}_{20} \mbox{Zn}_4 \mbox{B}_2 \mbox{Mo}_1 \ , \\ T_4 = \mbox{Full recommended dose of } \ N_{180} \mbox{P}_{70} \mbox{K}_{120} \mbox{S}_{20} \mbox{Zn}_4 \mbox{B}_2 \mbox{Mo}_1 \ . \end{array}$

Pheromone trap for Spodoptera and hand picking of insect larvae twice a week

Efficacy of Tricho-compost in controlling seedling mortality

Pathogen (Sclerotium rolfsii) was inoculated in soil

Cabbage seedling

Table 1. Seedling mortality of cabbage under different treatmentsat farmers' field, Bogra

Treatment	Seedlings/ m ²	Dead seedlings /m ²	Mortality (%)	Mortality reduction (%)
T ₁ =Tricho-compost @ 1.0 t/ha	386.2	72.5	18.8	9.70
T ₂ =Tricho-compost @ 1.5 t/ha	394.5	62.2	15.8	12.7
T ₃ =Tricho-compost @ 2.0 t/ha	401.3	58.6	14.6	13.9
T ₄ = Cow dung @ 5 t/ha + TSP @ 100 kg/ha (Farmers' practice)	345.2	98.6	28.5	-

Table 2. Effect of different treatments on growth characteristics of
cabbage seedlings

Treatment	Shoot height (cm)	Shoot height increased (%)	Fresh weight (g)	Fresh weight increased (%)	Dry weight (g)	Dry weight increased (%)
T ₁ =Tricho-compost @1.0 t/ha	15.56	20.4	21.03 b	16.63	1.78 a	24.5
T ₂ =Tricho-compost @1.5 t/ha	16.36	26.6	24.69 a	36.9	1.93 a	34.9
T ₃ =Tricho-compost @ 2.0 t/ha	17.03	31.8	26.02 a	44.3	1.98 b	38.5
T ₄ = Farmers' practice (Cow dung @ 5 t/ha + TSP @ 100 kg/ha)	12.92	-	18.03 c	-	1.43 c	-
p=0.05	NS		**		**	

Table 3. Plant mortality, head damage and yield of cabbage differenttreatments at farmers' field, Bogra

Treatment	Mortality due to pathogen (%)	Head damage due to insect (%)	Total biomass per head (Kg)	Marketable yield per head (Kg)	Yield (t/ha)	Yield increase over control (t/ha)
T ₁ =Tricho-compost @ 3.0 t/ha+ ³ / ₄ Chemical fertilizer	2.4 b	5.70 c	3.53	2.37 a	75.8	19.8
T ₂ =Tricho-compost @ 2.5 t/ha + ³ / ₄ Chemical fertilizer	4.1 c	6.90 c	2.84	2.12 ab	67.8	11.8
T ₃ =Tricho-compost @ 2.0 t/ha + ³ / ₄ Chemical fertilizer	5.2c	7.2b	2.31	1.98 ab	63.3	7.3
T ₄ = Only Chemical fertilizer	17.9 a	8.50 a	2.1	1.75 b	56.0	-
P=0.05	*	**	NS	**		

Table 4. Cost benefit analysis for summer cabbage at farmers' field, Bogra

Treatment	Yield (kg/ha)	Gross return (Tk)	Fixed Cost (Tk)	variable cost (Tk)	Total cost (Tk)	Net Return (Tk)	BCR
T ₁	75800	909600	25000	99000	124000	785600	7.3
T ₂	67800	813600	25000	93000	118000	695600	6.9
T ₃	63300	759600	25000	87000	112000	647600	6.6
T ₄	55000	660000	25000	84000	109000	551000	6.0

Tk.12.0/kg of cabbage, Chemical fertilizer=N₁₈₀P₇₀K₁₂₀S₂₀Zn₄B₂Mo₁

- T₁: Tricho-compost @ 3.0 t/ha+ ³/₄ Chemical fertilizer,
- T₂: Tricho-compost @ 2.5 t/ha + ³/₄ Chemical fertilizer,
- T₃: Tricho-compost @ 2.0 t/ha + ³/₄ Chemical fertilizer,
- T₄: (Farmer's practice) =Only Chemical fertilizer.

Head damage by Spodoptera and catch of insect by Pheromone trap

A. Chemical Fertilizer + Insecticide,

B. Application of Tricho-compost + *S. litura* Pheromone

IPM Practice

Farmer's practice

Farmers are happy and interested to use IPM technology

Two organizations

1. MCC and its Partner organization

2. GKSS at Bogra

Production of Tricho-Compost by GKSS

House for Tricho-compost production

House at BARI Size: 5 ft x 10 ft x 4.5 ft

House at Bogra, NGO's - MCC & GKSS

TRICHO-COMPOST

Raw materials in Tricho-compost

Cowdung, poultry refuse, water-hyacinth, vegetable waste, Sawdust, Maize bran and molasses were mixed in a definite proportion.

Spray of spore suspension (3x10⁷cfu) of *Trichoderma* @ 1L/ t

After 40-45 days

Chemical analysis compost, poultry litter & leachate

Indicator	Tricho-compost Poultry refu		Leachate
рН	8.6	6.9	6.4
OC (%)	20	19.0	2.05
Ca (%)	1.71	4.9	-
Mg (%)	0.4	1.7	-
K2O (%)	0.93	0.4	0.50
N (%)	1.2	1.7	0.01
P2O5 (%)	1.41	0.7	0.05
S (%)	0.24	0.4	0.10
В (%)	0.01	0.06	-
Cu (%)	0.01	0.004	-
Fe (%)	0.12	0.23	-
Mn (%)	0.026	0.07	-
Zn (%)	0.02	0.021	0.003

Gabtoli, Bogra

US Scientist

Cabbage production at BARI, Gazipur

Effect of Tricho-compost on weight and diameter of cabbage

Treatment	Diameter (cm)	Head weight (kg)	Biomass weight (kg)
Tricho- compost	14.61	2.01	2.61
Control	12.66	1.44	2.02
"t" test	0.0129	0.012	0.009

Tricho-compost: Tricho-compost @ 3 t/ ha + 1/4 of recommended chemical fertilizers

Control: Recommended fertilizer doses

Experimental plot, BARI, Gazipur

Effect of Tricho-compost on yield of some vegetable crops

Treatment	Yield (t//ha)					
	Tomato	Cabbage	Lady's finger	Stem amaranth		
Trcho- compost	71.63	70.87	19.75	19.44		
Control	47.20	43.23	13.71	13.28		
"t" test	0.007	0.006	0.012	0.012		

Yield increased over control due to application of Tricho-compost

Tricho-compost reduced disease incidence & increased yield (30 to 60 %) compared to chemical fertilizer treatment

Activities done by MCC Bogra and Its partner organization

Production of compost by farmers (Women) using ring and leachate as secondary

product (GUK)

Compost producing in Pasbibi, Joypurhat by Women farmers

Farmer's level production NGO- MCC activities

Tricho-leachate-compost application fields

-Activity done by MCC
1. Shahjanpur, Bogra
(Gramin Unnaon Prokalpo)
2. Pasbibi, Joypurhat
(Pasbibi Upazala Adibashi
Multiperpose Divelopment
Organization)

3. Pirgonj, Rangpur

(Student& their family)

- IPM BARC

- GKSS

Commercial production (2009- 2011)

Production (ton)	:	607.00
Sale (ton)	:	596.00
Training (person)	:	6880
Farmer use (person)	:	5100
Land covered (ha)	:	1030
Demonstration	:	69

Publications

1. Faruk, M. I., M. A. Bari, M. A. Rahman, M. S. Nahar and N. N. Khanam. 1999. Suppression of root-knot (*Meloidogyne*) of tomato using antagonistic isolates of *Trichoderma* species. Bangladesh J. Plant Pathology 15(1&2): 39-42.

2. Faruk, M. I., M. A. Bari and M. A. Rahman. 2002. Efficacy of *Trichoderma* as biocontrol agent against foot and root rot of bush bean. Bangladesh J. Agril. Res. 27 (4): 657-662.

 Nahar, M. S., M. A. Rahman, G. N. M. Ilias, M. A. Rahman, L. Yasmin,
 M. Afroz, A. N. M. Rezaul Karim and S. A. Miller. 2010. Effect of tricho-compost on soil-borne diseases and production of some vegetable crops. Bangladesh J. Plant Pathology 26(1&2):1-7.

4. Nahar, M. S., M. A. Rahman, M. Afroz, M, Mahfuz, A. N. M. Rezaul Karim and S. A. Miller. 2011. Tricho-compost and tricho-leachate: bio-products for effective management of soil borne disease pathogens and production of healthy seedlings. In: M. B. Meah (ed.) Proceeding of the 4th International Conference for the Development of Integrated Pest Management in Asia and Africa., held at Mymensingh, Bangladesh, 20-22 January, 2011. 4:140-147.

Thank You

Horticulture Research Centre

উদ্যানতত্ত্ব গবেষণা কেন্দ্র